A Fortran-Compiled List-Processing Language 1

Authors: H. Gelernter, J. R. Hansen, C. L. Gerberich

International Business Machines Corp., Yorktown Heights, N.Y.

Abstract. A compiled computer language for the manipulation of symbolic expressions organized in
storage as Newell-Shaw-Simon lists has been developed as a tool to make more convenient the task of
programming the simulation of a geometry theorem-proving machine on the IBM 704 high-speed
electronic digital computer. Statements in the language are written in usual FORTRAN notation, but with a
large set of special list-processing functions appended to the standard FORTRAN library. The algebraic
structure of certain statements in this language corresponds closely to the structure of an NSS list, making
possible the generation and manipulation of complex list expressions with a single statement. The many
programming advantages accruing from the use of FORTRAN, and in particular, the ease with which
massive and complex programs may be revised, combined with the flexibility offered by an NSS list
organization of storage make the language particularly useful where, as in the case of our
theorem-proving program, intermediate data of unpredicable form, complexity, and length may be
generated.

l. Introduction

Until recently, digital computer design has been strongly oriented toward increased speed and facility in
the arithmetic manipulation of numbers, for it is in this mode of operation that most calculations are
performed. With greater appreciation of the ultimate capacity of such machines, however, and with
increased understanding of the techniques of information processing, many computer programs are being
now written that deal largely with entities that are purely symbolic and processes that are logistic rather
than arithmetic. One such effort is the simulation of a geometry theorem-proving machine being
investigated by the authors and D. Loveland at the Yorktown IBM Research Center [1, 2]. This massive
simulation program has a characteristic feature in common with many other such symbol-manipulating
routines, and in particular, with those intended to carry out some abstract problem-solving process by the
use of heuristic methods [3, 4]. The intermediate data generated by such programs are generally
unpredictable in their form, complexity, and length. Arbitrary lists of information may or may not contain as
data an arbitrary number of items or sublists. To allocate beforehand to each possible list a block of
storage sufficient to contain some reasonable maximum amount of information would quickly exhaust all
available fast-access storage as well as prescribe rigidly the organization of information in the lists. A
program failure caused by some list exceeding its allotted space while most of the remainder of storage is
almost empty could expected as not uncommon occurence.

Faced with this program, Newell, Shaw, and Simon, in programming a heuristic theorem-proving system
for the propositional calculus, simulated (by programming) a kind of associative memory (henceforth
referred to as an NSS memory) in which lists of arbitrary length and organization could be generated by
annexing registers from a common store [5]. The price paid for tihs very substantial increase in
programming flexibility is an apparent decrease (by a factor of about one-half) in usable high-speed
storage and a real decrease in the speed of indexing consecutive items in a given list. The debilities are
due to the fact that consecutive items of data are not in consecutive memory registers, as in a standard
memory, but are, rather, connected by a string of location words. These location words, however,
determine the organization of the data, and in programs such as the one for which the NSS memory was
developed, the organization of the data contains a good deal of the information about it. In addition, the
location words themselves can carry several bits of useful data and can be used to annex a given item on
several different lists, making repetition of the data unnecessary. Consequently, as the number and
complexity of the generated lists increases, the density of useful information stored in a NSS memory
approaches one word per register.

The decrease in processing speed is not so easily shrugged off. By modifying the logical design of the
instruction roster to permit, for example, indirect addressing from both the left and the right half of a
register (decrement and address, respectively, in the IBM 704), much improvement may be realized in this
respect. But the ability to quickly withdraw a specified item of data by computing its address is inexorably
lost. Lacking the built-in refinements of indirect addressing and other special instructions designed to

manipulate NSS lists, Newell, et al, designed an interpretive routine for their computer (the Rand
Johnniac) to lighten the task of translating their programming wishes into the arithmetic-oriented
instruction code of the Johnniac. In fact, a series of these interpretive languages were written and were
called by their authors "Information Processing Languages" [5]. Unfortunately, the introduction of an
intermediate interpreter for each command further extracts its toll in computing speed, so that relatively
simple operations require an inordinate amount of time. This is in large degree responsible for the great
disparity in time required by the propositional calculus theorem prover of Newell et al, and that of Wang [6]
to prove the same theorems, Wang's machine being from three to five orders of magnitude faster. The
designers of the Information Processing Languages (I PL) estimate that a complex operation like choosing
a strong move in a game of chess would require of the order of an hour when programmed in their
interpretive system.

When the present authors embarked upon their effort to simulate a geometry theorem-proving machine, it
was early decided that an NSS organization of memory would best serve their purpose, and consideration
was given to the translation of a Johnniac | PL for use with the IBM 704 computer. However, J. McCarthy,
who was then consulting for the project, sugested that FORTRAN could be adapted to serve the same
purpose. He pointed out that the nesting of functions that is allowed within the FORTRAN format makes
possible the construction of elaborate information-processing subroutines with a single statement. The
authors have since discovered a further substantial advantage of an algebraic list-processing language
such as one written within the frameowrk of FORTRAN. It is the close analogy that exists between the
structure of an NSS list and a certain class of algebraic expressions that may be written within the
language. We shall return to this point in greater detail below. Not to be overlooked is the considerable
sophistication incorporatred in to the FORTRAN compiler itself, all of which carries over, of course, into our
FORTRAN-compiled list-processing language. It is reasonable to estimate that a routine written in our
language would run about five times as fast as the same program written in an interpretive language.

ll. The Newell-Shaw-Simon Associative Memory

Although the NSS scheme for a programmed associative memory has been described in the literature,
certain modifications that we have introduced make it necessary for us to repeat the description in some
detail. We shall, in this section, follow the paper of Newell and Shaw to which we have already referred. It
is well to point out, however, that the authors feel that most of the properties that Newell, et al, ascribe to
their Information Processing Language are rather properties of the NSS associative memory itself. They
are reasonably independent of the particular scheme devised for the manipulation of information within the
structure of the memory. For a certain limited number of cases, we have, in fact, found it more convenient
to write subroutines in the basic symbolic machine code. The advent of FORTRAN |11 makes it possible
to do this within the framework of our list-processing language.

The storage registers comprising an NSS memory all fall into one of two basic categories, those
containing the gross data for the information process (called data words), and those that serve to
associate strings of data into list structures (called location words). A list is the fundamental assemblage
of information in storage. Each register of an NSS memory is an element of at least one list; if it is not on
some information list, then it is on the list of available storage (LAVST), which serves as a source of raw
material for list formation processes and as a sink for dissociated registers when information is destroyed.

Data words (or d-words) are 36-bit units of information. The interpretation of this information is determined
by the list containing it, its location on a particular list, or by an identifying tag in the location word
associated with the datum. They may be treated as signed floating point numbers, or as any arbitrarily
fixed set of information fields packed into the register.

Location words (or I-words) supply the links between units of information in a list. For the purpose of our
FORTRAN-compiled list-processing language (FLPL), the format of a location word is fixed by a set of
conventions (fig. 1). In the following discussion, the field of an I-word containing the address of a register
will be said to point to that register.

A list is characterized by a directed linear string of I-words such that the decrement field of each I-word on
the list points to the next I-word on that list. The terminating I-word contains a zero in the decrement field.
The name of the list is the address of its initial I-word.

S 1-2 3-17 18-20 21-35

1 bit of Type | Address of location word for next 3 hits of | Address of data (or list) entered

data code | entry on this list. Set to zero in data on this list, or else 15 bits of
terminating I-word. data.

Sign Prefix | Decrement Tag Address

Fig. 1. Standard |-word format.

In general, the address field of the i th [-word on the list points to the i th data entry on the list. The entry
may be a d-word, or an l-word (if the entry is another list). If a fifteen-bit field will suffice to contain all the
information, the address may be used to carry the data itself rather than a reference to the data. The exact
nature of the entry is indicated by the type code.

In their published report, Newell and Shaw point out a particular difficulty in using their associative
memory [5, p. 240]. Since a given entry may appear on several different lists, it is important, when erasing
a list, to distinguish between these data and the entries that appear only once, for if the datum that
appears elsewhere is itself erased the remaining lists that contained it would be left pointing into limbo.
Our solution to the problem has been to assign a list priority to each data entry by means of a two-bit
I-word type code. The first bit of the code determines priority. It is set to 1 if the entry is an integral part of
the list containing the location word, and 0 if the entry is "borrowed" from some other list. Every entry will
belong to one and only one list, appearing as borrowed data on every other list. No initial data entry is
erased until all of its derivative entries have been erased. The second bit of the type code determines the
nature of the entry. It is set to 1 if the netry is a list (i.e., an I-word) and 0 if it is a d-word. The type code
contains all of the necessary information to control automatic erasing and printout of lists. The 00 type
code is used also to indicate direct entry of data into the address of the I-word, since erasure and printout
for this case are treated exactly as in the normal 00 "borrowed d-word" case (table 1). Since a list entry
pointer generalaly indicatres the first I-word of a specific list, that 15-bit quantity is also the machine name
for that list. It is often useful to view a list pointer as data entry in the I-word address field, the datum being,
of course, the name of a list.

The remaining sign and tag fields of the I-word are used for information storage. The sign, an especially
accessible bit of data, is often used as a "punctuation mark" for the list.

It is instructive, at this point, to examine a typical use of the NSS memory. Our example is chosen from
the geometry theorem-proving project mentioned above and illustrates clearly the value of an associative
memory for such programs. Displayed below (fig. 2) are two of the lists describing a diagram such as one
might construct to aid in finding a solution to a particular problem in elementary Euclidian plane geometry.
The lists contain I-words illlustrating each of the possible type-codes, including both modes of the 0-code.
We shall describe their structure in some detail, since our example will again prove to be useful at a later
point in our discussion of FLPL.

Type Code Address Field

11 (3) Iniital list entry pointer

10 (2) Initial d-word entry pointer

01 (1) "Borrowed" list entry pointer

00 (0) "Borrowed" d-word entry pointer or dat field
TABLE 1

LPTS is a list containing a coordinate representation of each point in the diagram together with the
symbolic name of each point. There are three entries on LPTS, each entry being in itself a list. The
machine name of LPTS is the address, a, of the first word of the list. FLPL keeps its own internal
"dictionary" to translate mnemonic designations such as LPTS into the machine name. The type-code of
each I-word of LPTS is 3, since each individual point list appears initially on LPTS and is considered as
belonging to that list. As indicated above, it is convenient to think of LPTS as comprising the three linked
I-words a, 3, y, containing as data entries the names al, 31, and y1, of the individual point lists, which are
in fact the machine names of points A, B, and C, respectively.

A given individual point list, al for example, contains the three compoentns of the position vector of that
point in a homogeneous coordinate system followed by the symbolic name of the point entered as data in
the I-word address field (type-code 0). The vector compopnents are in general entered as initial d-words
(type-code 2), but since the third component of a point is always unity in a homogeneous coordinate
system the constant 1.0 is entered only once, appearing subsequently as borrowed data (type-code 0).

Every segment in the diagram is listed on LSEG Each individual segment list, ul for example (the
segment AB), designates the endpoints of the segment, by "borrowing" the points from LPTS (type-code
1 in l-words p1 and p2). Note that the program has not only the machine names of the points (a1 and (1)
at its disposal, but the complete set of information conerning these poitns as well, Isince the names are in
fact the location of the individual point lists. The sign of the second I-word in each segment list is by
convention set negative to indicate the termination of the body of the list, and that the continuation of the
list is all descriptive material. SHould available storage become scarse at some stage in the computation,
it is again a convention (applying only to diagram listsO that all description continuations are erased, since
they may be recomputed if necessary.

The first entry on a segment description list is the length of the segment. It is identified by its position at
hte head of the description list (u3). Subsequent entries serve to express (in arbitray order) relationships
between the given segment and other elements of teh diagram and are identified by the tag. Tags 1 and 4
are interpreted as equality and perpendicularly, repsectively and |-words p4 and p5 indicate that the
segment AC (machine name, v1) is both equal and perpendicular to segment AB (u1). Tag 6 is interpreted
as membership in a triangle, and so w6 will contain in the address field the machine name of triangle ABC,
which will appear as a list entry on LTRNGL, a list of all triangles in the diagram. In each case the related
element is appended to the description as a "borrowed" list.

The associative properties of an NSS memory are clearly evident in the structure of LSEG. The list entry
SEGMENT AB contains, for example, the lists SEGMENT AC, and TRIANGLE ABC as part of the
description of segment AB. Each of these lists contain, in turn, the names of other related lists as
descriptive information, and so on, so that all levels of associated information that are pertinent to a given
element are available, given the name of that element.

In its initial state, the NSS memory comprises one long list of type 0 I-words, the list of available storage
(LAVST). The address field of eaech register contains as data the number of register following it on the
list, so that the amount of unused storage is always known. In loading the NSS memory (creating new
lists), cells are removeed from the head of LAVST. When lists are erased, cells are returned to the head of
LAVST. If at any stage of a calculation LAVST is exhausted, new space may be created by erasing some
of the less important listls in storage (recomputable descriptions for example). It should be clear that the
NSS system offers complete flexibility in the organization of information and complete freedom to
re-organize it at any stage. In programming for the geometry theorem-proving machine, the latter
advantage has been pressed with great frequency.

lll. The FORTRAN List-Processing Functions

Thoughout the remainder of this paper, it will be assumed that the reader is faimiliar with the FORTRAN
compiling system for the IBM 704 Data Processing Machine and has at his disposal the reference
manuals describing the original system and its extensions, FORTRAN Il and Ill. It must be emphasized
that FORTRAN is in itself an information processing language of great versatility and sophistication. Our
list-processing functions merely serve to increase the "vocabulary" of the language so that list
manipulation processes may be described within the FORTRAN framework as are ordinary computer
processes. We are thus able to enjoy the same ease of programming, ease of modification, and extensive
debugging aids available to the programmers of standard numerical problems. Since this paper is not
intended to serve as a programmer's manual for FLPL, many details essential for its use will be omitted.
The description of the language is completed in an IBM internal memorandum, soon to be available.

The dominant characteristic of most of our special list-processing functions is that they are not functions at
all in the normally understood sense of the term. For many of them, the value of the function 2 depends
not only upon its arguments, but also upon the particular internal state configuration of the computer as
they are "evaluated". Indeed, one often uses them solely to effect such a change, discarding the
unwanted value of the function. Most of our list-processing functions are, in fact, arbitrary subroutines that

can

be compounded and manipulated according to the algebraic rules for the compounding and

manipulation of functions in the FORTRAN language.

The

primitive (coded directly in machine language, and available on the library tape) FLPL functions fall

into seven rather well defined groups for performing the operations enumerated below:

a.
b.

—_ o O

g.

information retrieval

information storage

. information processing
. information search
. list generation

. service routines

special purpose functions

By combining the primitive operations according tot he rules of FORTRAN, list-processing operations and
subroutines of arbitarry complexity may be constructed. The compoundoperations can be named, if
desired, so that they may be used as elements of larger routines.

Given the name of a list, the information retrieval functions enable one to extract the contents of any
desired field of information in the list. The following are examples of this class 3.

XCDRF(J) , XCARF(J) , XCPRF(J) , XCSPF(J) , XCTRF(J)

Extract contents of the (decrement, address, prefix, signed prefix, tag) register of the word stored
in location J.

XCOWNE(J) , CVWAF(J)

Extract entire word at location J. CWAF(J) is used if information is to be treated as floating point
number.

XTRACTF(J, MASK, = MOVE)
MASK is a pattern of 18 or fewer contiguous bits in a 36-bit field; MOVE is an integer < 18.
Extracts the information field indicated by MASK from the word at location J and converts it into
standard FORTRAN fixed-point format (entirely in left half-register), by shifting MOVE positions to

the right or left, where positive MOVE is to the right. Thus, if MASKT is the bit pattern 00 00 00
70 00 00, then XTRACTF(K, MASKT, -3) iscompletely equivalentto XCTRF(J) .

Refering to figure 2, these functions perform the following operations 4.

1. XCARF(LPTS) O al, the name of the first point on LPTS (note that the compiler susbtitutes the
machine name a for LPTS).

2. XCARF(XCDRF(LPTS)) O B1, the name of the second point on LPTS.

3. XCARF(XCDRF(XCDRF(XCDRF(XCARF(LPTS))))) O A, the symbolic name of the first point
on LPTS.

4, CWF(XCARF(XCDRF(XCARF(LPTS)))) 0O floating point y-component of first point on LTPS.

POINTAy v ~~~ - °-°°7 | LSEG SEGMENT AB fI'O POINT A

5B T D)—(lez TiD—G COMP OF A) | €|3IV [[ut HI b2 [a1)

al all

(s TTezD—>(-comrora) ! ‘I-I-

R _ — _TO POINT B

(|2|p4 I |p31 HLength of Seg AB)

-4
(Bl Tt H [2[g2] |1311)—fe(x COMP OF B) l
B

.' B11

([2]e3] [pa1)—‘1—>(y COMP OF B) |

- >

TO TRIANGLE
ABC LISTED
ON LTRNGL

TO POINT C

(Blo_ [Hl Iv2 | |V11HX COMP OF C)) TO NEXT
v

oy ONLsEs.
TO DESCRIPTION
([2[ys] Jv21 H y-COMP OF C) LIST FOR SEGMENT AC
oyl B
TO CONSTANT 1.0

GRAPHIC REPRESENTATION
OF DIAGRAM

Fig. 2. In each I-word, the information fields contain sign, prefix (type code), decrement (next I-word on
list), tag, and address (entry pointer or data), in the order stated. Address of each memory cell is
designated at lower left.

Also in the category of information retrieval are the following generalized forms of XCARF and XCDRF:
XCARNF(J) , XCDRnF(J)

where n is an integer < 9. Equivalent to n iterations of the base function; thus XCAR3F(J) is
equivalent to XCARF(XCARF(XCARF(J))) .

XCADF(J) , XCADAF(J) , XCADADF(J) , XCDAF(J) , XCDADF(J) , XCDADAF(J)

Equivalent to a sequence of alternations of XCARF and XCDRF, specified by the sequence of
"D's" and "A's" in the name of the function; thus XCDADF(J) is equivalent to
XCDRF(XCARF(XCDRF(J))) .

With the generalized functions available, examples 2, 3, and 4 above could be written XCADF(LPTS),
XCARF(XCDR3F(XCARF(LPTS))) , and CWAF(XCADAF(LPTS)) , respectively.

If the same operation is to be performed on every entry on a list, an indexing pointer is set up and the
operation is performed with the index as a dummy variable. Thus, the following program could be used to
find a point on LPTS with x-component greater than two units.

I NDEX = LPTS. Initialize index pointer.
10 | F(CWAF(XCAR2F(1 NDEX)) - 2.0) 15, 15, 20. GCo to statement 20
if x-conponent is greater than 2.0; otherw se go to 15.
15 | NDEX = XCDRF(| NDEX). Move index to next I "-word on "~ LPTS °
20 NAMVEPT = XCARF(I NDEX). Retrieve nmachi ne name of point.
GO TO (EXIT TO ROUTI NE FOR PROCESSI NG NAMEPT) .
25 (EXIT WHEN LPTS CONTAINS NO PO NT WTH X- COWP > 2.0).

If the coordinates of a point are to be processed frequently, one might define specific
component-extraction functions within FORTRAN to ease the task, thus, COWXF(J) =
CWAF(XCAR2F(J)) and COWYF(J) = CWAF(XCADAF(J)) will extract the x- and y-component of a
point-vector, respectively. Statement 10 above could then be written:

10 | F(COWPXF(| NDEX)-2.0) 15, 15, 20.

The information storage primitives are used to store or modify information in already existing list
structures. The value of each function is the previous content of the information field in which the new
information is to be stored °. They include the following:

XSTORDF(J, K) , XSTORAF(J, K) .

The 15-bit quantity K is stored in the (decrement, address) of the word at location J. Its value is
the previous content of the (decrement, address) field of J.

XSTORTF(J, 1), XSTOSPF(J, 1) .

The 3-bit quantity | is stored in the (tag, sign and prefix) field of the word at location J. Its value is
the previous content of the (tag, sigh and prefix) register.

XSWAE(J, L), SWAF(J, D).

The full word of fixed point data L, (or the full word of floating point data D) is stored in location J.
The value of the function is the previous content of J.

The following FLPL statement will interchange the y-components of points A and B in LPTS:

JUNK = XSTORAF(XCDADRF(LPTS), XSTORAF(XCDAF(LPTS), XCADADF(LPTS)))

The value of the entire function is 321, the address of the y-component of B. Since we do not wish to
further process this number, it is discarded into a "bottomless pit" by setting the function equal to a
standard variable, "JUNK".

Also classified as information storage functions are:
XORTAGF(J, '), XORSPXF(J, 1) .

The 3-bit quantity | is "ORed" into the (tag, sign and prefix) of the word at location J. Its value is
the new (tag, sign and prefix) at location J.

Logical processing of data within the framework of FLPL is effected by the information processing
functions, which include the following:

XORF(J, K) , XANDF(J, K) .

The logical (OR, AND) operation is performed on the 36-bit quantities J and K. The sign bit of
the value is the result of the (OR, AND) operation on the sign bits of J and K.

XMASKF(J, MASK, + MOVE).

MASK is a pattern of 18 or fewer contiguous bits in a 36-bit field; MOVE is an integer < 18.
Extracts the information field indicated by MASK from the quantity J (not from the word at
location J) and converts it into FORTRAN fixed point format by shifting MOVE positions (positive
move is to the right).

XMASKDF(J), XMASKAF(J), XMASKTF(J), and XMASSPF(J) are special cases of XMASKF for
converting the decrement, address, tag, or signed prefix of the quantity J into FORTRAN fixed-point
format.

In addition to the above, FLPL has, of course, at its disposal the standard FORTRAN arithmetic
information processing operations for both fixed and floating-point data.

Although the information search functions may easily be defined within FLPL, it is convenient to include a
number of the more frequently used search processes among the primitives. The most useful are:

XLASLCF(J)

Searches down the list of I-words headed by (and named) J. Its value is the address of the last
[-word on J (determined by its zero decrement).

XTGSCHF(J, 1), XSPSCHF(J, I).

| is a 3-bit quantity < 7. Searches list J for the first I-word with (tag, signed prefix) equal to | . Its
value is the address of the I-word with the required (tag, signed prefix), unless none can be
found, whence it is set to zero.

XBTSCHF(J, M) , XBSPSHF(J, M) .

M is the octal representation of a one-bit mask on a 3-bit field (equals 1, 2, or 4). Searches the list
J for the first I-word with a abit in position M of its (tag, signed prefix). Its value is the address of
the l-word with the required (tag, signed prefix), or zero, if none can be found on J.

Again referring to figure 2,

" XLASLCF(LPTS) "™ O vy, the last |-word on " LPTS .

" XTGSCHF(XCARF(LSEG, 1) O p4, an |-word on pl (segnent AB),

contai ni ng the machi ne nane of a segnent equal to segnent AB in
its address field.

" " XBSPSHF(XCARF(LSEG), 4) " 0O p2, an |-word on pl containing a bit
in the sign position.

The operations described thus far are characterized by the fact that they all manipulate or process
information on lists that already exist in NSS storage. In order to generate new lists, the operation of
removing a cell from available storage must be introduced into the system. The latter process is the
distinguishing property of the list-generating functions. Fundamental among these are the following:

XDVWORDF(J) .

The full 36-bit word J is stored in a cell removed from LAVST. The value of the function is the
address of that cell.

XLWORDF(JSP, JD, JA, JT).

JSP and JT are 3-bit quantities. JD and JA are 15-bit quantities. A cell is removed from LAVST
and JSP, JD, JA, JT are installed in the signed prefix, decrement, address and tag fields of that
cell, respectively. The value of the function is the address of the cell.

Arbitrary list structures may be generated by combining XDWORDF and XLWORDF according to the
FORTRAN rules for the algebraic composition of functions. Thus, let us supppose that in the course of the
machine's attempt to find a proof for a particular theorem, a new point is constructed with x- and
y-components XCOVP and YCOWP, respectively. The point has been given a symbolic name, NUNANE, by
calculation of the earliest letter of the alphabet that has not yet been used. The single statement displayed
below will generate a point list for NUNAVE and insert it on LPTS at the beginning of the list (fig. 3) 6,
(Note that one could as readily attach the new point anywhere on LPTS, and at the end in particular by
using XLASCF(LPTS) .)

LPTS = XLWORDF(3, LPTS, XLWORDF(2, XLWORDF(2, XLWORDF(0, XLWORDF(O,
0, NUNAME, 0), XCADF(XCDAF(LPTS)), 0), XDWORDF(YCOWP), 0),
XDWORDF(XCOMP) , 0) , 0)

The following correspondance is seen to exist between nested list-generating FLPL expressions and an
NSS list. Nesting of XLWORDF functions in the decrement variable position of XLWORDF corresponds to
the linear stringing of I-words in a list. A "decrement nest" of XLWORDF functions in the address variable
position of an XLWORDF function corresponds to a sublist on the list containing that instance of XLWORDF.
Alternatively, the address variable may be an XDWORDF function, corresponding to the entry of a d-word,
or may be a 15-bit symbol. The signed prefix and tag fields may of course, be 3-bit variables, rather than
the constants illustrated above. These properties are clearly recursive in each instance of XLWORDF in an
FLPL expression.

Lprs—> [BJa [61 »——=(]2[52 [[611)——=(x-COMP OF NU)
d 51

011

(|2[63 | [621 »——=(y-COMP OF NU)
52

021
CJo[34 | |a31),
03 \

\
fojo [[NnU)
04 \

CI3]] la1 y——=([2]a2 | |011)—\ﬁ(x—COMP OF A)
a al

V' all
\
TO POINT (2[a3] Ja21 }——+>(y-COMP OF A)
B ENTRY a2 ‘\ a2l
(R2lo4 T Ja3)—>1.0)
a3 a3l
Clojo []a D
a4

Fig. 3. Configuration of LPTS after the addition of point NUNAVE (abbreviated NU above) to the list.

Here, again, it is convenient to include among the primitive FLPL functions a certain number of
specialized list-generating processes even thought hey may readily be defined in terms of the primitives
already mentioned. Thus, a set of "XCOPY" functions enables one to reproduce a given list in any desired
configuration, the "XI NSERT" series of functions enables one to introduce data at anay point in a list, and
So on.

Input, output, monitoring, and "housekeeping" routines are classified as service functions. Together with
the functions already described, they comprise a complete NSS list processing language. Included in this
class are:

XSTARTF(J, K) .

Converts the block of standard 704 core storage starting at location J and ending at K into NSS
storage by placing each cell on LAVST.

XTOERAF(J) .

Erase the entire list J including all data and sublists belonging to J.

XERASEF(J) .

Erase the single I-word and associated data word (if one is present), where J contains in tis
decrement the address of the word to be erased.

XDUVPF(J, + T).

NSS list output routine used extensively for debugging. J is the list to be written on output tape
unit T. If T is positive, all borrowed lists are printed; if negative, only sublists that belong to J are
printed.

CLOCKF(O) .

Reads time clock. Has as its value in floating point form the true time of day to the nearest
hundredth of a minute.

Other input-output routines are available for storing data lists on tape and reading them back into NSS
storage.

Finally, a particular FLPL library will generally have among its primtives a number of functions that are
rather specialized to the problem at hand. Members of this class all perform complex operations that are
called for with great frequency, so that it is useful to seek greater efficiency than could be attained if they
were defined within FLPL. They may be easily written by first defining them within FLPL and them
"streamlining" the resulting compiled SAP routines.

V. Concluding Remarks

FLPL has been, in a sense, specifically "product-developed" for the geometry theorem-proving program,
and thus far the latter is the only large-scale program written in that language. The geometry program,
however, comprises three largely dissimilar subsections which span the entire range of complex
information-processing opertions [2]. On one hand the syntax computer deals almost excllusively with
uninterpreted symbolic expressions, while on the other hand the diagram computer is mostly concerned
with a highly structured array of numerical data. The heuristic computer, which serves as an intermediary
between syntax and diagram computers, must process both kinds of information, interpreting symbolic
expressions as numerical equations and converting numerical data into abstract symbolic expressions. On
this basis it is reasonable to claim a fair degree of universality for FLPL, providing only that the
requirements of the problem indicate the desirability of an NSS organization of storage.

It is interesting to compare FLPL with | PL V, a Newell-Shaw-Simon interpretive list-processing language
soon to be available for the IBM 704. In | PL V, Newel, et al, have solved the problem of list priority
assignment in much the same way that the authors have, by assigning the equivalent of our type code to
each l-word. Both languages are able to perform identical list-processing operations with the following
exceptions. FLPL contains, in addition to the processes described in section lll, all legitimate FORTRAN
operations, so that the entire floating point arithmetic power of FORTRAN is at the programmer's disposal,
together with the convenient input, output, indexing, and format processes vailable in FORTRAN. Too, the
diagnostic services performed by FORTRAN offer great aid and comfort to the programmer. On the other
hand, because | PL V completely discards the accumulator as a means of communication between | PL
subroutines, substituting instead an NSS communication list, one may define routines recursively within
the framework of | PL V. ALthough it is possible to do a limited amount of recursion within FLPL by
purposefully saving all intermediate results and index registers in NSS lists, the authors have not yet felt
the need to experiment with this mode of operation, since the traditional looping procedures have served
the purpose well.

Higher list-processing routines may easily be defined within either language, although perhaps here FLPL
maintains a slight edge over | PL V in the vareiety of procedures whereby such routines may be
constructed and named. In the other direction, the inclusion of basic machine language instructions within
the vocabulary of the language is a decied advantage of FLPL, and one that has been pressed with great
frequency in the programming of the geometry theorem-proving machine.

FLPL trades a negligible increase in program storage for a significant increase in procesing speed. In
many cases, the difference in computing time required to produce results will make the difference
between a program that is a useful research tool and one that is merely a curiosity. For a typical problem

appearing in a high-school geometry examination, our FLPL-programmed geometry machine requires a
reasonable twenty minutes. The authors fell that the two hours required by the same program written in
I PL V would be an excessive amount of time to allow the machine to search for a proof.

Comparison of the two languages in terms of programming convenience is largely taste-dependent.
Again, the authors fell that an algebraic compounding of mnemonically-named expressions is preferable
to a linear sequencing of "catalog-number" designated routines, but programmers experienced in the use
of | PL seem to find little advantage in the change of program format. A new programmer, unless he has
had previous training in the use of FORTRAN, is likely to require about the same amount of time to gain
proficiency in either language.

One feature of I PL V is excluded from FLPL by the nature of a compiler. Sequences of | PL
instructions to be intrepreted are stored in the computer as NSS lists, just as are the data. Although this
property has been largely irrelevant to all programs written to date, it is conceivable that one might want to
write a program in which the symbolic entities that are processed are | PL instructions themselves, and in
which transfers of control take place between the meta-program and the machine-generated one. The fact
that the transformation of FLPL expressions into computer activity is a two-stage, irreversible process
places this kind of behavior beyond the range of our language, even though it is quite feasible to
manipulate FLPL expressions within FLPL.

REFERENCES

1. Gelernter, H. and Rochester, N., Intelligent behavior in problem-solving machines, IBM J. Res. Dev.
2 (1958), 336-345.

2. Gelernter, H., Realization of a geometry theorem-proving machine, Proc. Int. Conf. on Information
Processinng, Unesco, Paris (1959), to be published.

3. Newell, A., Shaw, J. C., and Simon, H. A., Empirical explorations of the logic theory machine, Proc.
of the western Joint Computer Conference, (1957), pp. 218-230.

4. Minsky, M. L., Some methods of artificial intelligence and heuristic programming, Proc. Symposium
on the Mechanization of Thought Processes, Teddington (1958).

5. Newell,] A. and Shaw, J. C., Programming the logic theory machine, Proc. of the Western Joint
Computer Conference, (1957), pp. 230-240.

6. Wang, H., Toward mechanical mathematics, IBM J. Res. Dev. 4, No. 1 (1960).

1 Received April, 1959. Part of the material contained herein was presented at the
meeting of the Association, September 1-3, 1959.

2 In normal use the execution of a compiled FORTRAN function statement produces a
number in the accumulator which is the "value" of the function.

3 The complete set of functions of each class is described in the previously mentioned
internal report.

4 The symbol O should be read "has the value".

5 Information storage in FLPL is, therefore, nondestructive.

6 Because the correspondance between lists and FLPL expressions, this statement

can be formulated in the time it takes to write it down, despite its complicated
appearance.

	A Fortran-Compiled List-Processing Language 1
	I. Introduction
	II. The Newell-Shaw-Simon Associative Memory
	III. The FORTRAN List-Processing Functions
	IV. Concluding Remarks
	REFERENCES

