
AWK (1) General Commands Manual AWK (1)

NAME
awk − pattern-directed scanning and processing language

SYNOPSIS
awk [−F fs | −−csv] [−v var=value] [’prog’ | −f progfile] [file ...]

DESCRIPTION
Awk scans each input file for lines that match any of a set of patterns specified literally in prog or in one or
more files specified as −f progfile. With each pattern there can be an associated action that will be per-
formed when a line of a file matches the pattern. Each line is matched against the pattern portion of every
pattern-action statement; the associated action is performed for each matched pattern. The file name −
means the standard input. Any file of the form var=value is treated as an assignment, not a filename, and
is executed at the time it would have been opened if it were a filename. The option −v followed by
var=value is an assignment to be done before prog is executed; any number of −v options may be present.
The −F fs option defines the input field separator to be the regular expression fs. The −−csv option causes
awk to process records using (more or less) standard comma-separated values (CSV) format.

An input line is normally made up of fields separated by white space, or by the regular expression FS. The
fields are denoted $1, $2, ..., while $0 refers to the entire line. If FS is null, the input line is split into one
field per character.

A pattern-action statement has the form:

pattern { action }

A missing { action } means print the line; a missing pattern always matches. Pattern-action statements are
separated by newlines or semicolons.

An action is a sequence of statements. A statement can be one of the following:

if(expression) statement [else statement]
while(expression) statement

for(expression ; expression ; expression) statement

for(var in array) statement

do statement while(expression)
break
continue
{ [statement ...] }
expression # commonly var = expression

print [expression-list] [> expression]
printf format [, expression-list] [> expression]
return [expression]
next # skip remaining patterns on this input line
nextfile # skip rest of this file, open next, start at top
delete array[expression] # delete an array element
delete array # delete all elements of array
exit [expression] # exit immediately; status is expression

Statements are terminated by semicolons, newlines or right braces. An empty expression-list stands for $0.
String constants are quoted " ", with the usual C escapes recognized within. Expressions take on string or
numeric values as appropriate, and are built using the operators + − * / % ˆ (exponentiation), and concate-
nation (indicated by white space). The operators ! ++ −− += −= *= /= %= ˆ= > >= < <= == != ?: are also
available in expressions. Variables may be scalars, array elements (denoted x[i]) or fields. Variables are
initialized to the null string. Array subscripts may be any string, not necessarily numeric; this allows for a
form of associative memory. Multiple subscripts such as [i,j,k] are permitted; the constituents are concate-
nated, separated by the value of SUBSEP.

The print statement prints its arguments on the standard output (or on a file if > file or >> file is present or
on a pipe if | cmd is present), separated by the current output field separator, and terminated by the output
record separator. file and cmd may be literal names or parenthesized expressions; identical string values in

1

AWK (1) General Commands Manual AWK (1)

different statements denote the same open file. The printf statement formats its expression list according to
the format (see printf (3)). The built-in function close(expr) closes the file or pipe expr. The built-in func-
tion fflush(expr) flushes any buffered output for the file or pipe expr.

The mathematical functions atan2, cos, exp, log, sin, and sqrt are built in. Other built-in functions:

length([v]) the length of its argument taken as a string, number of elements in an array for an array argu-
ment, or length of $0 if no argument.

rand() random number on [0,1).
srand([s]) sets seed for rand and returns the previous seed.
int(x) truncates to an integer value.
substr(s, m [, n])

the n-character substring of s that begins at position m counted from 1. If no n, use the rest of
the string.

index(s, t) the position in s where the string t occurs, or 0 if it does not.
match(s, r)

the position in s where the regular expression r occurs, or 0 if it does not. The variables
RSTART and RLENGTH are set to the position and length of the matched string.

split(s, a [, fs])
splits the string s into array elements a[1], a[2], ..., a[n], and returns n. The separation is done
with the regular expression fs or with the field separator FS if fs is not given. An empty string
as field separator splits the string into one array element per character.

sub(r, t [, s])
substitutes t for the first occurrence of the regular expression r in the string s. If s is not given,
$0 is used.

gsub(r, t [, s])
same as sub except that all occurrences of the regular expression are replaced; sub and gsub
return the number of replacements.

sprintf(fmt, expr, ...)
the string resulting from formatting expr ... according to the printf (3) format fmt.

system(cmd)
executes cmd and returns its exit status. This will be −1 upon error, cmd’s exit status upon a
normal exit, 256 + sig upon death-by-signal, where sig is the number of the murdering signal,
or 512 + sig if there was a core dump.

tolower(str)
returns a copy of str with all upper-case characters translated to their corresponding lower-case
equivalents.

toupper(str)
returns a copy of str with all lower-case characters translated to their corresponding upper-case
equivalents.

The ‘‘function’’ getline sets $0 to the next input record from the current input file; getline < file sets $0 to
the next record from file. getline x sets variable x instead. Finally, cmd | getline pipes the output of cmd

into getline; each call of getline returns the next line of output from cmd . In all cases, getline returns 1 for
a successful input, 0 for end of file, and −1 for an error.

Patterns are arbitrary Boolean combinations (with ! || &&) of regular expressions and relational expres-
sions. Regular expressions are as in egrep; see grep(1). Isolated regular expressions in a pattern apply to
the entire line. Regular expressions may also occur in relational expressions, using the operators ˜ and !˜.
/re/ is a constant regular expression; any string (constant or variable) may be used as a regular expression,
except in the position of an isolated regular expression in a pattern.

A pattern may consist of two patterns separated by a comma; in this case, the action is performed for all
lines from an occurrence of the first pattern through an occurrence of the second, inclusive.

A relational expression is one of the following:

2

AWK (1) General Commands Manual AWK (1)

expression matchop regular-expression

expression relop expression

expression in array-name

(expr, expr, ...) in array-name

where a relop is any of the six relational operators in C, and a matchop is either ˜ (matches) or !˜ (does not
match). A conditional is an arithmetic expression, a relational expression, or a Boolean combination of
these.

The special patterns BEGIN and END may be used to capture control before the first input line is read and
after the last. BEGIN and END do not combine with other patterns. They may appear multiple times in a
program and execute in the order they are read by awk.

Variable names with special meanings:

ARGC argument count, assignable.
ARGV argument array, assignable; non-null members are taken as filenames.
CONVFMT conversion format used when converting numbers (default %.6g).
ENVIRON array of environment variables; subscripts are names.
FILENAME the name of the current input file.
FNR ordinal number of the current record in the current file.
FS regular expression used to separate fields; also settable by option −F fs.
NF number of fields in the current record.
NR ordinal number of the current record.
OFMT output format for numbers (default %.6g).
OFS output field separator (default space).
ORS output record separator (default newline).
RLENGTH the length of a string matched by match.
RS input record separator (default newline). If empty, blank lines separate records. If more than

one character long, RS is treated as a regular expression, and records are separated by text
matching the expression.

RSTART the start position of a string matched by match.
SUBSEP separates multiple subscripts (default 034).

Functions may be defined (at the position of a pattern-action statement) thus:

function foo(a, b, c) { ... }

Parameters are passed by value if scalar and by reference if array name; functions may be called recur-
sively. Parameters are local to the function; all other variables are global. Thus local variables may be cre-
ated by providing excess parameters in the function definition.

ENVIRONMENT VARIABLES
If POSIXLY_CORRECT is set in the environment, then awk follows the POSIX rules for sub and gsub
with respect to consecutive backslashes and ampersands.

EXAMPLES
length($0) > 72

Print lines longer than 72 characters.

{ print $2, $1 }
Print first two fields in opposite order.

BEGIN { FS = ",[\t]*|[\t]+" }
{ print $2, $1 }
Same, with input fields separated by comma and/or spaces and tabs.

{ s += $1 }
END { print "sum is", s, " average is", s/NR }

Add up first column, print sum and average.

3

AWK (1) General Commands Manual AWK (1)

/start/, /stop/
Print all lines between start/stop pairs.

BEGIN { # Simulate echo(1)
for (i = 1; i < ARGC; i++) printf "%s ", ARGV[i]
printf "\n"
exit }

SEE ALSO
grep(1), lex(1), sed(1)
A. V. Aho, B. W. Kernighan, P. J. Weinberger, The AWK Programming Language, Second Edition, Addi-
son-Wesley, 2024. ISBN 978-0-13-826972-2, 0-13-826972-6.

BUGS
There are no explicit conversions between numbers and strings. To force an expression to be treated as a
number add 0 to it; to force it to be treated as a string concatenate "" to it.

The scope rules for variables in functions are a botch; the syntax is worse.

Input is expected to be UTF-8 encoded. Other multibyte character sets are not handled. However, in eight-
bit locales, awk treats each input byte as a separate character.

UNUSUAL FLOATING-POINT VALUES
Awk was designed before IEEE 754 arithmetic defined Not-A-Number (NaN) and Infinity values, which are
supported by all modern floating-point hardware.

Because awk uses strtod(3) and atof (3) to convert string values to double-precision floating-point values,
modern C libraries also convert strings starting with inf and nan into infinity and NaN values respectively.
This led to strange results, with something like this:

echo nancy | awk ’{ print $1 + 0 }’

printing nan instead of zero.

Awk now follows GNU AWK, and prefilters string values before attempting to convert them to numbers, as
follows:

Hexadecimal values

Hexadecimal values (allowed since C99) convert to zero, as they did prior to C99.

NaN values

The two strings +nan and −nan (case independent) convert to NaN. No others do. (NaNs can
have signs.)

Infinity values

The two strings +inf and −inf (case independent) convert to positive and negative infinity, respec-
tively. No others do.

4

